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The cyclic displacements introduced in mechanics by Chetaev [1] give the
first integrals of the equations of motlion. These displacements are deter-
mined from the properties of the introduced infinitesimal operators of the
group of infinltely small Lie transformations, from the kinetic energy and
from the force function.

1., Let us consider a symmetric gyroscope on gimbals [2 and 3]. The center
of gravity of the gyroscope with its casing (the inner ring) 1s on the axis
of symmetry of the gyroscope {Fig.i}.

It The 2, ~axis of the fixed coordinate system
¥ Ox & is along the gimbals' guser ring axis,

the origin coincides with the fixed point of the
gyroscope (O . The movlng coordinate system Oxyz,
with its origin colciding with tne {ixed point of
the gyroscope, 1s connected with the axes of the
casing. The x-axis 1s along the casing's axis of
rotation, the g-axis is along the gyroscope's axis
of symmetry.

Let the x, y, § axes be the principal axes
of the casing's ellipsold of inertia with respect to the fixed point 0o .

Let us introduce the following notatlon: y 18 the angle of rotation of
the outer gimbal ring, 6 1s the angle of rotation of the casing in the
ring, ¢ 18 the angle of rotation of the gyroscope in the casing (angle of
spin of the gyroscope in its casing)}, 4", £°, (° are the principal wmoments
of inertia of the casing, 4, B = 4, ¢ are the moments of inertla of the
gyroscope about the x, y, z axes, £inally 1 1is the moment of Inertia of
the outer gimbal ring about the p, -axis, We shall assume that the ellipsold
of inertia of the gyroscope about the point ¢ 1s an ellipsold of revolution
about the g-axis,

The x, y, & components of the instanteneous angular veloclty of rotation
of the casing are

Filg. 1

pP=0, ¢ =yYsnd =y cosd
and the x, y, z components of the lnstanteneous angular veloveity of the

gyroscope are
p=0, g=vsin0, r=¢ 4 P cosd

be2
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The kinetlc energies of the outer gimbal ring, of the ¢asing and the gyro-
scope, multiplied by 2 are, respectively

e, A°p™ 4 Bt 4+ C°r® Apt 4+ B2+ Cr®
The total kinetlc energy of the system, multiplled by 2, 1s
T = (4 + A4°) 02 + [I 4 C° 4 (A + B® — C°) sin® 81’2 + C (9" -} " cos 0)

Assuming absence of friction in the besarings, the active forces acting on
the system admit the force function ¢ , depending in general on the angles
8, § and g .

2. We shall apply a method which has been previously used for flnding
the linear integral of & rigid body containing inside moving masses [4].
We shall introduce the infinitesimal operators of the Lie group of infinitely
small transformations in the following way.

Let the state of our mechanical system be determined by the parameters of
i{ieérigugz 151 which, for our system, will be regarded as Poincaré's varisbles
1 and 6] ,

v =< sin s cos y (b — @), g = = sin2/; 0 sin 1/, (¢ — @)
v = 7 cos 1/, 0 sin Vs ( - ), p = — 1 €08y 0 cos 1/, (f + ¢)
These variables are connected by the relation
32 4 pt a3 4 p? et {x = const)

Without losing generality we can set for simplieity + =1 . The para-
meters of the real displacements will be

N R L
{a = consb=£0, b = coust=+0) M
The Poincaré varlables satisfy relations
A/ de == -~ p [{a 4 bl b (o - 6) o] + RxTimy \
dp fde = A [ - B) My - (2 — BY Rl A g " ({_W'JL) "
dvidi= —p fa —byn + (a2 =Bl — vy v p?

dp /dt = v [{a — )+ (a1 b) ml — 0w

The differentlial of the function of the state of the mechanical system
f(t, Ay, v, p) with respect to the real displacements of the system 1s deter-
mined from

3
df == (X‘) B };‘; 71,_;-&-1) dt
f==1

where the infinitesimal operators of the Lie group of the reai displacements

are 5
4Yo'~"-_v‘3t"
a d a d
Xy = (a b)(ka;w ;&‘5"‘;;)-{- {a —-b)(v i P?&)
3 4 a8 8
Xﬁ’—‘f{‘“?’)(i‘g‘g“%“gg)%- {Q—Hx}(v ‘3;—9_65{?} @

xo=wt g ) =2 (v o)

The operators of the group of the real displacements
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Xo Xiy Xgy X3

are commutative, llkewise the operators of the subgroup of tHe possible dis-
placements

Xl.’ 4Y2, X3
(X, X) =0 (X, X)=0 (ik=1,23) @)

that 1is

3. We shall apply the constructed infinitesimal operators to find the
integral of the cyclic displacement in the problem stated in Section 1.

From Formulas (1) follows
P = 2a (, + ny), @ = — 2b (M, — M), 8" = 2ng

The kinetic energy of our gyroscope on gimbals in the Poincaré~Chetaev
variables can be written as

T =2 {a®K + [a (v* +‘pz — A% —u?) B2 CY 1 4
+ 242K + [a (v2 + p2 — A2 —p?) -+ B CY gt 4 2 (A4 + A%) g + (4)

+ 4 {a*K + [a® (V2 + p? — AF — p?)? — B3] C} e
Here

K=1-+C-F4(4+ B —C% (A2 p?) (V¥ + p?)
The displacement X, from (2) will according to Chetaev be cyclicS as

shown by (3}, which is always satisfied, and by requiring that X,(L =0,
which 1s satlsfied 1f we set

X, (U)y=0
Similar requirement in the Buler variables gives

U 8l

a(—ﬁp—* e b% = 0 )

lUnder condition (5), the cyeclic displacement Y, has the following integ-

ra
1 aT S l 3 a2
Ty = (K A o (00 gt — W) — DGy
(e - [a® (3 p? — A2 — p%)? — B*] C) 1, = const {6)

In Buler's variables the integral has the form
a {l/ 4 C° 4 (4 4+ B — C°) sin? 0} ' -+ Cr cos 0} — b Cr = const (N

This integral has not been discussed in the llterature.

Thus, requiring Y, from (2) to be a cyclic displacement we can show that
under condition

at/ ol
T “+ b % = 0 8)
we can have the lntegral
a{ll - C° - (A+ B° — C° sin? 01y’ -+ Cr cos 0} + bCr == const 9)

Besides these integrals shown above the equations of motion of a gyroscope
on gimbals permit the known kinetic energy integral

[74+C° 4+ {4+ B —C°)sin?8]y'2 4 (4 + A7) 024 C{g -+ cosb)?= 20+ h
The requirement to have the two eyclic displacemements X, and ). slmul-

taneously leads tc two integrals (7) and (9) under the conditlons (53 and
(8). The sum and the difference of (5) and (8) give condition
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The integrals (7) and (9) can be broken up into integrals shown by Chetaev,
who reduced the integration of the equations of motion to quadratures and
analyzed the problem of stability with respect to the angle of nutation [2].

4, Similar results with the same parameters of possible displacements
can be also obtained when the Eulerian angles are used for Polncaré varia-
bles.

Knowing the integral of the cyclic displacement (7), we can very simply
check 1t, by using the differential equations of motion of the system
oU

(d+ 470" —¢p2(4 — C + B®> — C°) sin 0 cos 8 -+ Co’'y’ sin 6 =%

—(%— {lI +C°+ (4 + B° —C°) sin20 }¢’ -+ C cos 0 (¢’ + ¢’ cos 8)) =%%

d oUu
Z 0@+ eost) =5
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