
IJJNEAR INTWRAL OEF A CYCLIC DZWLAOMBVT 

BOR A QYROMOPE ON ~IMBAL8 

(Renelved January 24, 19b4) 

The cycI$c displacements introduced in mechanics by Chetaev [Sj give the 
first integral8 of the equations of motion. These displaceme&x am deter- 
mlned from the propertles of Me introduced h-&initesimf operators oQ the 
group 0S infinitely small Lie transformations, from the Wnetic energy and 
from the Sorce function. 

1, Let u8 consider a symmetric gyroscope on gimbals [2and 33. The center 
of gravity of the ggrosoope with its casSng (the inner ring) is on the axis 
of symmetry of the gyroscope (Plg.i). 

The I -axis of the fixed coordinate system 
O& YI. 4 1 s along the glmbala’ 

! 
uter ring axis, 

the origln coincides with the tied point of the 
gyroscope 0 . The moving coordinate system Oxpr, 
with its origin colcidlng with the fixed point of 
the gyroscope, is connected with the axes of the 
casing. The x-axis ia along the casing’s axis of 
rotation, the x-axis is along the gyroscope’s axis 

of symmetry. 
Fig. I Let the x, II, s axes be the principal axes 

of the casingzs ellipsoid of inertila with respect Co the fixed point 0 . 
Let us introduce the following notation: 1 is the angle of rotation of 

the outer glmbal ring, g Is the angle of rotation of tne casing in the 
ring, is the angle of rotation of the gyroscope in the casing (angle of 
spin of’the gyroscope in its casing),, A”, PI Co me the principal moments 
of inertia of the casing, A, B - R, 0 are the moments of inertia of the 
gyroscope about the x, g1 z axes, finally f is the moment of Inertia of 
the outer gimbal ring about the pk -axis. We shall assume that the ellipsoid 
of inertia of the gyroscope about the Point 0 Is an ellipsoid of revolution 
about the w-axis. 

The x, y, x components of the instanteneous ahgular velocity OS rotation 
of the casing are 

p 0 z 6’ , go =*‘sin 8, P =*‘cos 6 

and the x, y, I components of the kstanteneous angular velocity of the 
gyroscope are 

p C’, I q = I#’ sin 8, r = 9’ _t- $’ cos e 
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The kinetic energres of the outer gimbal ~lng, of the aasing and the gyro- 
scope, muftiplled by 2 are, respectively 

&ts, A"p* + B"q*s + C"ra2 A@ + Bq”- $ Cr2 

The total kinetic energy of the system, multiplied by 2, 19 

2T zx (A +A")fj'a + [I + C" + (A + B0 - CO)sin" e]l$'" f c (tp' -I- 'I' cos e)c 

Assuming absence of frfCt&on in the bearings, the active forces acting on 
the system admit the force functton tr , depending In general -on. the angles 
e,p and q5‘ 

We shall apply a method which has been previously used for finding 
the2iinear Integral of a rigid body Containing Inside moving masses [41. 
We shall introduce the inflnitesimaL operators of the Lie group of infinitely 
small transformations in the following way. 

Let the state of our mechanical system be determtied bF the parameters of 
Rodriguez t5J which, for orir system, will be regarded as Pofncar&'s variables 
Eland61 > 

x = ': Sill'/& eos '12($ - rp)? P = ': siu x/z 0 sin 'A($ - q3) 

Y = z cos l/s 0 sin I/s ($ 4- CpA P' - 2 COS'/, 8 cos '/3 (1* -+-q)) 

These variables are connected by the relation 

$"e .j- PS f 3 + P" = 2% (2 := EOl?&] 

Without losing generality we can set for simplicZtY 7 - 1 . The para- 
meters of the real displacements ~111. be 

The Poincar4 variables satisfy relations 

The differential of the functian of the state of the mechanical System 
f(1,&j.l, v, p) with respect to the real displacements of the system Is deter- 
mined from 3 

U = 
( 
x, -+- )7 ?),.YJ tzt 

iTZl 1 

where the infinitesimal operators of the Lie group of the reai displacements 
are a 

The operators of the group of the real displacements 
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are commutative, likewise the operators of the subgroup of tne possible dis- 
placements 

that is 

3. We shall 
integral of the 

Xl, &, x, 
(X,X& = 0 (X,, X0) = 0 (i, k = 1, 2, 3) (3) 

apply the constructed infinitesimal operators to find the 
cyclic displacement in the problem stated in Section 1. 

From Pormulas (1) follows 

9' = 2Q (n1+ rl,), cp' = - 2b (rll- rls), 8' = 21, 

Ths kinetic energy of our gyroscope on gimbals In the Polncare-Chetaev 
variables can be written as 

T = 2 {a$K + [a (~2 +p2 - a2 - pL2) - bt2 C) qr” + 

f 2 (a2K _t [a (v2 + p2 - A,* - p2) + bJ2 C} qs2 + 2 (A + A”) qt + (4) 

Here 
-+ 4 {a2K + [a3 (~2 -j- p2 - 12 - p2)2 - b2] C) qlqt 

K = I + C” -f- 4 (A + Do - Co) (ii2 -t_ @) (v2 + p2) 

The displacement X, from (2) will according to Chetaev be cyclic as 
shown by (31, which is always satisfied, and by requiring that X,(L~ = 0 , 
which Is satisfied if we set 

X,(V) = 0 

Similar requirement in the Euler variables gives 

au au 
"&j- -b%=To 

(5) 

Under condition (5), the cyclic displacement X, has the following integ- 
ral 

1 8T 
-- - z= {Q’K _t- In (v” + $ _ J.2 _ ~2) I_ b]2 C} q1 + 
4 a% 

-:- (n2K _t- [aa (~2 + ps - h2 - 1~~)~ - bZ] C} qa = eonst !6) 

In Euler's variables the integral has the form 

a ([I j- C" _1- (/I 3-W -Co) sir$ O] I/I' $ Cr cos 0) - bCr =f cmst (7) 

This integral has not been discussed In the literature. 

Thus, requlrlng ,yz from (2) to be a cyclic displacement we Can show that 
under condition F - 

$&._i_ bag= 0 (8) 

we can have the Integral 

n ([Z -t- C" _t (.4+ U" - C")sin* O]+' + Cr cos O> -I- bCr = const (9) 

Besides these Integrals shown above the equations of mcrtion of a gyrOscOPe 
on gimbals permit the known kinetic energy integral 

[I + Cc + (fl + jji _-Cc) sill2 g]$" -/- (A + .4')8'2 + C (cp' +-*j' COS 0)2 = 2U+h 

The requirement to have the two cyclic dlsplacemements X, and X grl- 
!Teously leads tc two Integrals ('7) and (9) under the condltione (53 

. The sum and the difference of (5) and (8) give COnditiOn 
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The Integrals (7) and (9) can be broken up Into integrals shown by Chetaev, 
who reduced the Integration of the equations of motion to quadratures and 
analyzed the problem of stabl1lty with respect to the angle of nutatlon [2]. 

4. Similar results with the same parameters of possible displacements 
can be also obtained when the Eulerlan angles are used for Polncare varla- 
bles. 

Knowing the integral of the cyclic displacement (7), we can very simply 
check It, by using the differential equations of motion of the system 

(A + __I') 13" -9'" (A - C + B" - Co) sin 0 cos 8 + Ccp’$’ sin 0 = g 

f co + (A + B” - C’) sin*0 1.9' + C cos 0 (cp’ + 9’ cos e)j = g 

4 c (up’ + 9 cos e) = f$ 
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